Finite Cyclic Group Actions with the Tracial Rokhlin Property
نویسنده
چکیده
We give examples of actions of Z/2Z on AF algebras and AT algebras which demonstrate the differences between the (strict) Rokhlin property and the tracial Rokhlin property, and between (strict) approximate representability and tracial approximate representability. Specific results include the following. We determine exactly when a product type action of Z/2Z on a UHF algebra has the tracial Rokhlin property; in particular, unlike for the strict Rokhlin property, every UHF algebra admits such an action. We prove that Blackadar’s action of Z/2Z on the 2∞ UHF algebra, whose crossed product is not AF because it has nontrivial K1-group, has the tracial Rokhlin property, and we give an example of an action of Z/2Z on a simple unital AF algebra which has the tracial Rokhlin property and such that the K0-group of the crossed product has torsion. In particular, the crossed product of a simple unital AF algebra by an action of Z/2Z with the tracial Rokhlin property need not be AF. We give examples of a tracially approximately representable action of Z/2Z on a simple unital AF algebra which is nontrivial on K0, and of a tracially approximately representable action of Z/2Z on a simple unital AT algebra with real rank zero which is nontrivial on K1.
منابع مشابه
Crossed Products by Finite Cyclic Group Actions with the Tracial Rokhlin Property
We define the tracial Rokhlin property for actions of finite cyclic groups on stably finite simple unital C*-algebras. We prove that the crossed product of a stably finite simple unital C*-algebra with tracial rank zero by an action with this property again has tracial rank zero. Under a kind of weak approximate innerness assumption and one other technical condition, we prove that if the action...
متن کاملThe Tracial Rokhlin Property for Actions of Finite Groups on C*-algebras
We define “tracial” analogs of the Rokhlin property for actions of finite groups, approximate representability of actions of finite abelian groups, and of approximate innerness. We prove the following four analogs of related “nontracial” results. • The crossed product of an infinite dimensional simple separable unital C*-algebra with tracial rank zero by an action of a finite group with the tra...
متن کاملLocal tracial C*-algebras
Let $Omega$ be a class of unital $C^*$-algebras. We introduce the notion of a local tracial $Omega$-algebra. Let $A$ be an $alpha$-simple unital local tracial $Omega$-algebra. Suppose that $alpha:Gto $Aut($A$) is an action of a finite group $G$ on $A$ which has a certain non-simple tracial Rokhlin property. Then the crossed product algebra $C^*(G,A,alpha)$ is a unital local traci...
متن کاملCrossed Products by Finite Group Actions with the Rokhlin Property
We prove that a number of classes of separable unital C*-algebras are closed under crossed products by finite group actions with the Rokhlin property, including: • AI algebras, AT algebras, and related classes characterized by direct limit decompositions using semiprojective building blocks. • Simple unital AH algebras with slow dimension growth and real rank zero. • C*-algebras with real rank ...
متن کاملThe Rokhlin property and the tracial topological rank
Let A be a unital separable simple C∗-algebra with TR(A) ≤ 1 and α be an automorphism. We show that if α satisfies the tracially cyclic Rokhlin property then TR(A ⋊α Z) ≤ 1. We also show that whenever A has a unique tracial state and αm is uniformly outer for each m and αr is approximately inner for some r > 0, α satisfies the tracial cyclic Rokhlin property. By applying the classification theo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008